Evaluation of a direct 4D reconstruction method using generalised linear least squares for estimating nonlinear micro-parametric maps.

نویسندگان

  • Georgios I Angelis
  • Julian C Matthews
  • Fotis A Kotasidis
  • Pawel J Markiewicz
  • William R Lionheart
  • Andrew J Reader
چکیده

OBJECTIVE Estimation of nonlinear micro-parameters is a computationally demanding and fairly challenging process, since it involves the use of rather slow iterative nonlinear fitting algorithms and it often results in very noisy voxel-wise parametric maps. Direct reconstruction algorithms can provide parametric maps with reduced variance, but usually the overall reconstruction is impractically time consuming with common nonlinear fitting algorithms. METHODS In this work we employed a recently proposed direct parametric image reconstruction algorithm to estimate the parametric maps of all micro-parameters of a two-tissue compartment model, used to describe the kinetics of [[Formula: see text]F]FDG. The algorithm decouples the tomographic and the kinetic modelling problems, allowing the use of previously developed post-reconstruction methods, such as the generalised linear least squares (GLLS) algorithm. RESULTS Results on both clinical and simulated data showed that the proposed direct reconstruction method provides considerable quantitative and qualitative improvements for all micro-parameters compared to the conventional post-reconstruction fitting method. Additionally, region-wise comparison of all parametric maps against the well-established filtered back projection followed by post-reconstruction non-linear fitting, as well as the direct Patlak method, showed substantial quantitative agreement in all regions. CONCLUSIONS The proposed direct parametric reconstruction algorithm is a promising approach towards the estimation of all individual microparameters of any compartment model. In addition, due to the linearised nature of the GLLS algorithm, the fitting step can be very efficiently implemented and, therefore, it does not considerably affect the overall reconstruction time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Least – Squares Method For Estimating Diffusion Coefficient

 Abstract: Determination of the diffusion coefficient on the base of solution of a linear inverse problem of the parameter estimation using the Least-square method is presented in this research. For this propose a set of temperature measurements at a single sensor location inside the heat conducting body was considered. The corresponding direct problem was then solved by the application of the ...

متن کامل

LEAST – SQUARES METHOD FOR ESTIMATING DIFFUSION COEFFICIENT

Determining the diffusion coefficient based on the solution of the linear inverse problem of the parameter estimation by using the Least-square method is presented. A set of temperature measurements at a single sensor location inside the heat conducting body is required. The corresponding direct problem will be solved by an application of the heat fundamental solution.

متن کامل

Nonlinear Parametric Identification of an IPMC Actuator Model

Ionic polymer metal composite is a class of electro-active polymers which are very attractive smart actuators due to its large bending deflection, high mechanical flexibility, low excitation voltage, low density, and ease of fabrication. These properties make IPMC a proper candidate for many applications in various fields such as robotics, aerospace, biomedicine, etc. Although the actuation beh...

متن کامل

Volumetric 3D Reconstruction and Parametric Shape Modeling from RGB-D Sequences

The recent availability of low-cost RGB-D sensors and the maturity of machine vision algorithms makes shape-based parametric modeling of 3D objects in natural environments more practical than ever before. In this paper, we investigate the use of RGB-D based modeling of natural objects using RGB-D sensors and a combination of volumetric 3D reconstruction and parametric shape modeling. We apply t...

متن کامل

Using an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints

In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of nuclear medicine

دوره 28 9  شماره 

صفحات  -

تاریخ انتشار 2014